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NATIONAL ADVISORY COMMITIEE FOR AERONAUTICS

TECHENICAL MEMORANDUM NO. 1137

THE TURBULENT FLOW IN DIFFUSERS OF SMALL DIVERGENCE ANGLE'

By G. A, Gourzhienko
SUMMARY

The turbulent flow in a conical diffuser represents the type of
turbulent boundary layer with positive longitudinal pressure gradient.
In contrast to the boundary layer problem, however, it is not neces—
sary that the pressure distribution along the limits of the boundary
layer (along the axis of the diffuser) be given, since this distribu—
tion can be obtained from the computation. Thie circumstance, together
with the greater simplicity of the problem as a whole, provides a use-
ful basis for the study of the extension of the resulis of semiempiri-
cal theories to the case of motion with a positive pressure gradient.

In the first part of the paper, formulae are derived for the com
putation of the velocity and pressure distributions in the turbulent
Tlow along, and at right angles to, the axis of a diffuser of small
cone angle. The problem is solved on the basis of the following
assumptions:

1. The motion is assumed to take place along straight lines inter-—
secting at the vertex of the diffuser cone.

2. The normal components of the turbulent stress tensor are as—
gumed lsotropic. Their gradients along the diffluser are neglected by
comparison with the gradient of the static pressure.

3. In the eguations of motion the hypothesis of *the mixing length
(Prandtl formula) is applied, and it is assumed that the curve of de~
pendence of the nondimensional mixing length on the distance from the
wall is absolute.

L. In determining the shape of this curve none of the existing
turbulence theories is taken as a basis, the assumption, common to all
turbulence theories, only bpeing mamde that the first derivative of the

lReport No. 462, of the Central Aero-Hydrodypamical Institute,
Moscow, 1939,
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mixing length with respect to the distance from the wall is the nondi-
mensional universal turbulence constant X . The shape of the mixing
length curve is choeen as & cubic parabola from the boundary conditions
applicable to it.

5. To obtain the solution of the equation ef motion in finite form
there is applied the step—by—step interpolation of the values of the
inertia integral, the applicability of which is proved.

6. At the walls of the diffuser the existence of a laminar sub—~
layer is assumed, the thickmess of which follows the known Karmin law.
It is shown that the assumption of radial motion in this sublayer is
fundamentally inapplicable. In obtaining the velocity distribution in
the sublayer, the assumption is made of the continuity of the curve of
friction distribution in passing through the boundary of the subliayer.

7. The resistance formula obtained for the diffuser is found to be
absolutely identical with that for the pipe.

In the second part of the papey tests are described on the meas--
urement of the velocity and pressure distribution in two conical dif-
fusers with angles of 1° and 2°, and a detailed comparison is made
between the experimental and the theoretical results, IV is found that:

1. The assumption of the radial character of the flow is satisfied
only with a certain, though large, degree of approximation as should e
the case if viscous Ffriction exists simultaneously with turbulent fric—
tion.

2. The obtained formula for the velocity distribution agrees well
with the experimental results.

3. The increase computed (on the basis of the derived resistance
formula with the values of the universal constants itaken from tests on
pipes) in static pressure along the diffuser deviates litile from the

test results.

In the third part of the razer =& Jirsot, very ajnproximate, at~
tempt is made at estimating semiempirically the deviation of the true
motion from the radial pattern assumed. The aniiysis is based on the
assumption that the true motion may to a first approximation be as—
sumed radial but emanating from another fictiticus source. The
iatter, for the region near the diffuser axis, is computed by two
different methods. The good agresment of the resulis of thsse com—
putations shows that the assumption is Justified. The assumpbion of
the displaced source in computing the characteristics of the growth
of the static pressure along the diffussr gives complete agreement
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with the experiment for the 1° diffuser, while for the 2° diffuser

the -disagreement is greater than without the assumption. The result
for the 2° diffuser evidently is explained by the fact that the gradi-
ent’ of the normal component of the turbulent stresses was not taken
into account together with the pressure gredient. This correction,
which is negligible for, the 1 diffuser, may have an avppreciable effect
in the case of- the 2° diffuser,

INTRODUCTION

The chief experimental source on which at the present time the so—
called semlempirical theories of turbulence are based is the fully
developed turbulent flow between two parallel planes or in &a straight
cylindrycal pipe. The reason for such an exclusive role played by
these two tyres of flow lies in the circumstance that these are the
gimplest types of flow as regards thelr kinetlc and dynamic relations.
In the first place, both for the casse of {'low between parallel walls
anid for the circular pine there 1is no need 1o consider the change in
the mean velocity and friction profiles along the axis of the Tlow
since neither the velocitles nor the Frictional stresses along the flow
direction change “n valus. In the second place, because of the absence
of inertia forcos the prolile of the shear streeses transverse vo the
flow direction is found to be linear. This fact is not a comsequence
of an, hypcthesis regarding the turbulenne but follows from the tunda-
mental equatlon of motion (Reynolds), Finally, for these s.mple cases
the eguation of mot.on permits the experimental computat.on of the
shear stress at the wall by measuring the drop in static rressure along
the flow, as may be done with very great accuracy. The latter circum—
stance very greatly simplifies the experimental confirmation of the
theoretical resistance laws,

The careful exper.mental investigation of the ebove two cames of
turbulent flow has led to a completely satisfactory application for
yractical purposes of the semiempirical turbulence theories {Prandtl,
EKarman, Mattioli). The empirical nature of these theories lies, as is
known, in the presence of ths sxperimental constants X (the absolute
turbulance constant) and o (the nondimensional thickness of the lam—
inar sublaver at the wall) obtalned in evaluating the test data on the
relation vetween the fricticn at the wall and the Reynolds number from
the formulas obtained on the basis of these theories.

At the present time iv may be confidently asserted thet fer the
above—mentioned simplest cases of flow the constancy and absolutensss
of these constants are facts that have besn repeatedly verified., How-
ever, it still remains very uncertain to what extent the absoluteness
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of these constants is maintained in passing to other cases of motion,
in particular to motion, not with a negative static pressure gradient
(as in the pipe and channel), but with a positive gradient — that is,
to those cases characterized by the existence of inertia forces. A4s
is knowm, in these cases both the velocity and the frictional stress
profiles undergo radical changee. Such a case is that, for example,
of the turbulent motion in the Dboundery layer at the upper surface of
a wing. Notwithstanding the undoubted urgency of the solution of the
problem of the wing boundary layer this type of motion apnears very un—
suitable for the purposes of generalizing the existing semiempirical
turbulence theories. Thus, the frictional stress along the wing con—
tour varies according to & law which 18 connected with the velocity
digtribution lay by a very complicated integro-differential condition
(Karman) . .

In addition to the fact that this condition on evaluating the test
data requires the carrying out of graphical differentiation of the ex—
perimental curves, a procedure which introduces an element of arbitrar-
iness in the case of the flow about & wing, there, strictly spesking,
does not exist a determinate problem since the static pressure distri-—
bution over the wing profile must in gll cases be obtained from exper--
iment. Thus the "turbulent" character of the phenomenon in the
boundary layer is very much compiicated by accessory circumstances of
the external problem. For this reason it was considered desireblie to
obtain a type of flow which, while possessing all the properties asso—
ciated with a variable positive pressure gradient, was most free from
varicus external complicating circumstances,

Such a type of motion, that is, a somewhat exaggerated model of
the boundary layer of & wing, may be represented by the steadry flow in
a straight—walled or conical diffuser. OSince in this case the entire
region within the diffuser is filled with the "boundary layer," the
chief difficulty of the extermal problem -~ namely, the incompleteness
of the equations of motion as regards the external conditions -- drowvs
out. The equations obtained are determinate both for tine velocity and the
pressure distributlons. Moreover, by introducing a certain assumption,
for small divergence angles of the diffuser there is the possibility of
greatly s mplifying the investigation of the character of the change in
the values of the velocities, Triction, and prsssures along the flow by
entirely avoiding the operations asscciated with graphical different’a—~
tion., By -investigating the possibility of generalizing the semiempirical
theory to the case of the diffuser it is possible then Lo prcceed c¢n a
sursr baszs to the boundary leayer study. In selecting the conical dif-
fuser for the present investigation the following facts were considered
because of convenience in testing:
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1. To obtein steady turbvulence in the diffuser, it is nscessary to
have an initial inlet length ahead of it. It was convenient for this
purpose to use the cylindricel pipe, already investlgated in a previous
paper (reference 1), which may be considered as a "diffuser of zero
divergence "

3
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2. In investigating a straight-walled diffuser with an initial 1n-
let length. it is necessary to make the distance between its latersl
parallel walls as large as possible in order to avoid the effect of in-
creasing boundary layer on the flow in the axial plane. A large dis--
tance between the lateral walls would give such a large diffuser cross
section, however, that the air inteke espparatus at disvosal would
be unable to produce a flow with sufficiently large Reynolds number.

g -

o

The present paper is divided into three parts. In the first part
an attempt 1s made to give & theoretical analysis of the turbulent fliow
in a conlcal diffuser with small divergence angle. In the second part
the procedure is described, the results of the tests conducted on coni-
cal diffusers with cone angles »f 1° and 2° are presented, and an
exheustive comparison of the experimental results with the theory pre—
gented 1n the first part is given. In the third part an approximate
methed is given for estimating the deviation of the true motion from
the radial pattern assumed in the first part.

I. THEORETICAL ANALYSIS OF THE TURBULENT FLOW IN A CONICAL DIFFUSER

1. Fundemental Equations of Motlon

L It will be asgumed that a fully turbulent flow enters from a
straight cylindrical pipe of radius R :into a conical &ilffuser with
angle 9, Dbetween the axis and the generator (fig. 1). To investigate
this case, it is convenient to assume a spherical system of coordinates
with the pole at the vertex of the cone O and with the pelar axis
directed along the axis of the ¢mne. Thue the coordinates of any point
M within the diffuser will be the distance from the peole r and two
angles, namely, Jd Dbetween the straight line comnegting the point with
the pole and the polar axis, and ¢ between the perpendicular dropped
from the point M on the polar axis and any fixed plane containing the
polar axis, . '

The hydrodynamic equations {Euler) in the chosen coordinates have,
as is known, for the ateady motien the following form:




6 NACA T™M No. 1137

. 2 2 . N
oV, Ty OVn Vo Yy V3 Vo 1 %p
Vo o + — ; - - = - 2
or r & r sin ¥ rdp r r p v
E:\vﬁ V_L() (:J'V,a Vq) Bvs vrvﬂ chz 1 a ¥
T+ — T+ - cot § = — = =2 L (1)
r or r o r 8in Y oY r r pr of
ov vy OV v ov Vo VgV,
2,270, 0 9,0, 39 s - L e
or r o r sin ¥ co r r pr sin 9 &P
and the equation of continuity
dv 1 dvy © v 2v vy
— 4+ = ~ -+ L L Zots =0 (2)
or r oM r sind o by r

where V. is the component of the velocity directed alcng the straight

line passing through the pole and v and Vo are the velocity com—
ponents directed along the tangents to the arce :1easvri:g the corre—
sponding angles; ©p is the svat:c pressure in the flew, and p the
dens.ty of the filuid. ZFrom tre pro.e~ding ecuatlicns is eet up the equa—
tion of Reynolds for which pur.c3e. as usuzl, the velocity and pressure
are broken down into a mean va'.s w th respect tec time and a fluctua—
tion about the mean:

- v

Vp = Ty + Vo i

o

VCP*VCP-FVCP E
; (2)

i

V_B-—-Jg‘-l'\"‘ }

P =D+ D J

Equations (1) with the aid of the continuity equation may be trans—
formed into the following;
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N Eizg_l L1 (v A ) . L olv.v.) _ ?? _ vwﬁ
; or r a0 r sin 9 P Cor r
i
2
A
i Ty V.
L LE . RN S R
N r p or
v dvy® Avyv, V.. vyZ X
(\r 2) + & (v57) + 1 (vovg) + 3 rd 2 oot 9
or r o9 r sin 9 3o r r
@ & d
S M R :
r pr ci
2 ~
a(vg‘r) L1 o(vyvy) . 1 d(v¢) . 3vrv(p . 20a Vg ot s
or r 9% r sin 3 o) r r
I — o
pr sin & Co
By substituting (3), averaging with respect to time and remember~
ing that according to the averaging laws:
7 e . — *'l ]
'V'r 3 = VrV_a + Vl" Vs
v' = 0, etc.

the three eguations of motion are obtained:
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a(;ra) gy . - === "'2‘ 7.2  ov.2

+ 1 B(vr V,s) 1 . O('Vr“ vCD) _ Vg) -.Vﬁ + r
or r od r sin 9 o9 LT oL r
V.. v oy T oo or
P SERL IR S S N e S . 1
r p or o L or r ol r sin ¢

v T T 2r T
o oXe S e, _xr . xd 6‘!

acp r r r r
vy vg) 1 O%° 1 (v \7cp) Iy Vg - ;’_-li
-~ * + - cot 9 -
or r &8 r sin o) r -
— 2 “
M - = OT S
+-————-cot{3=~-:_l.._,.a,-£ 3_-1— rw‘)_’_]; 99, 1
r pr & p d3r r S - sin g
or 3T .
x — 22 4 I € - Lﬂ)cotﬂi’
op r r
o T (% T AT,5)  F, I, T
i CP)+‘:LO(V’S q))+ 1 (¢)+3r Q. 2 ot 9
or r o9 reing ¢ r

N - r

o1 @, %re, 1 e, 1 T
or r

pr sin 9 3 p [ 9 reinsd o

3r 2T
N TG
r

r

and the continuity equation

..

X

or

¥, ¥,
>4 L ‘CQ_'_ +—cotd =0
o9 rsind o r r

+

i 2R b

where
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H
&
1
|
©
H4
L]
@

T

w-::—-p vCPva

are the tangential and

— )

—z
Tep =~ P Vp

1
Ty = — P Vy >
T = pW;E
PP P y

the normal components of the cstress tensor.

Since the Reynolds ecuations were derived from the Euler equations,
that is, equations that do not .ake the viscosity into account, it is
safe to assume that the tanzent 21 ccmponents of the stress tensor

Ty TT@’ and. T¢6

represent the sum of the viscous and turbulence parts of the stresses,
because the viscous stresees, b analogy with the turbulence stresses,
are also a consequence of the averaging with respect to time of the ac—
tual molecular motion.

If the analogous ccrivonents of the viscous stresses are substituted
(expressed in spherical coordinates in terms of the velocity gradients)
in the obtained equations in place of the tangsntial components of the
turbulence stresses, and if isotyopy of the normal viscous gtresses is
assumed, the wcell-known equations of Navier-Stokes are obtained.

As is known, the system of Reynolds equations is not determinate
since, for determining the ten unknown functions,
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- —— —-—— —

Vr, Vﬁ, VCP, P, T T

3’ Trq): Pe’

only four equations are availeble. Some simplifying assumptionse now

will be introduced. It will be safe to gassume that the average motion
in the diffuser is one with axial symmetry; that is, the velccity com—~
ponent V¢ and all derivatives with respect to ¢ are equal to zero.

This agsumption immediately removes the third equation from considera—
tion and gimplifies the others. Then, Introduce the legs obvious
assumption that the mean motion is along the straight lines passing
through the vole. This, of course, is a very sitrong assumption, approx-—-
lmately satisfied evidently only for small divergence angles of the
diffuser, and, no doubt, requiring experimental confirmation (which will
be presented later). By this assumptlon it mey be considered that

v, = 0. In this case it follows that:

3§

—— —2 -
- o ev.. 1 oo
By —= + =~= =
or r p or

i o o7 Ta T 2Ty T3 1

L 1 rr 1 Zlre ty _ P o cot 01

p-r r r b r T T r J

CooT T, o7 /T T
0=~ L S L X L 8 L 99, xS e 8 ot 6]
pr & p or r r N or r j

Introduce the assumption of isctrcepy of the normal components of
the turbulent stresses, that is, that the equations are approximately
gatisfied

s &
Ter B Tas Tq:cp

Then there is obtained from the first eguation, letting for simplicity

Vey=u and Tyg =T
o(p -7
du  2u® 1 rr) 1 o(T sin 9)
U — 4 —— = — = +
or r D or er sin 9 IS5
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wherse - Ty, TYepresents some total pressure which at the diffuser
wall where the fluctuations vanish, is equal to the static. Setting

P = Tyr = p1, and assuming in view of the smallnese of the angles
sin 9 & 9 gives: ‘

2u

+ = =

éll 21.12 ___ _.]__' BPJ. + 1l a('r-ﬂ) . ().}.)
or r p or prt A

The second equation containing the gradient of T transverse to
the diffuser is excluded entirely from consideration., This equation is
obtained by taking the sum of the projJections of all forces acting on
the fluid in the direction psrrendicular to the mean radial motion.
Therefore in introducing the asswmption of the radial character of the
motion, this eguation suffers to a considerably greater degree than the
first, obtained from considering the projections of all the forces in
the direction of the initial motion. It must be supposed that the
neglected terms in the second equation, due to the assumption of radial
motion, which contain the component vy are of the same order of mag—

nitude as the remaining terms containing 2 and the Aifference

o8
Tep — 799 . Thus the rotention of the second equation must be considered
as unsuitable and even harmful, In what follows it will be seen that
the remaining equations are entirely sufficient for sclving ths problem
for the assumptions made.

The continuity equation under the assumption of axigl symmetry and
radlel character of the mean motion becomes:

?E + 2u =0
or r

This equation may be easily integrated with respsct to r and its gen—
eral integral will be:

u=“§'—)' (_;)

(3
r?

where t is an arbitrary function of 3§ only. Expression (5) shows
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that under these assumptions- similar velocity profilee should be obtaired
over the entire length of the diffuser and that along each radial line of
flow the velocity varies in the same manner as for the motion of an ideal
fluid ~ that is, inversely proportional to the square of the distance
from the source.

Substituting equation (5) in the initial equation (4) results in

the following equation after combining similar terms and multiplying by

I'5:

o2 o1 31 s _xl 3(r9)
p Or . P

~ From the eguation obtained two very impertant conclusions can be drawn
on the change in pressure and intensity of friction along the diffuser.
Since the left side of the equation dces not depend on r, it must be
assumed that the right side likewise is independent of r, This can be

.the case only if Jpy/dr is inversely proportional to r° and v is
inversely proportional to re,

By setting

-
c=2 P15 agna £=t (6)

o or

where G and [ according to what was said above do not depend on r,
the above equation of motion may be written as the usual one:

a(es)
as

2t2 = G — (1)

2|

The first expression in (6) may easily be integrated with respect to r.
There is obtained

1 1 1
P1 — P1 ,—_......pG.< ...—-—....—.) (8)

o) 4 4

4 r Ty
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where. p1, iB, the absolute va]ue of the generalized préssure at any

point of the flow having the coor@1nafe fe , The expression (d) giving

the law of variation of this pressuré along the diffueer, together with
the law of drop in velocity (5), i very suitable for the experimental
checking of the fundamental assumption of radial flow. Use will be made
of this expression later.

.. 1t was assumed that .the, pressure. p, 1ie the difference hetween the
static pressure and the normal turbulent stress: .

Plg-ﬁ"Trr

Thus the magnitude G, strictly speaking, is determined as

oo (% _%Trx
P or ar /

It is assumed that the gradient along r of Trp is small by compari—

son with the gradient of the pressure p. This makes it possible to
consider

:® 35
p Or

In studying the boundary layer the assumption is usually made that
the static pressure does not vary over the thickness of the boundary
layer. This is excellently confirmed by experiment. Applying an analogous
agsumption to this case, let

5 _
09

This at once leads to the result that G = constant. Multiplying equa-—

tion (7) by ¥ apd integrating from § = O (axis of diffuser) to a
variable 9 glves

r 2
2 | tzqsdﬂ-G—z—-——l-fﬂ
o
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- s - «
- Y . Ve [
.

Traﬂsforﬁ to nondimensional variables -for which purpose the angle s re—
ferred to its maximm value J.,. letting .

LR
s

4.

The velocity u will be referred to the "dyﬁamic velocity of friction’

at the wall v = / T /p wvhere TO is the frictional intensity at
e o

the wall, and then w/v_ = 9. Since u = t/r° and

PR a1
v‘: = '/TO/Q =2 .1/ fo/l" p = ;é- 7 fo/p

l"-’-..—.
t = bp is obtained where b = /ffo/p. Substituting in the last ex—
pression yields : :

r 2 * -
; £ . T :

> | Prat = Q_E - _%5 (9)
o) 2b 3o pb ’

On substituting in the second term of the right side b = // foyb,

there 1s obtained the generaliized law of the distribution of the fric~
tional stress transverse to the diffuser:

- ¢ 9 Ge=

AR I GET
r .1 | 20, PPrd: — = (10)
fo T, £ L 2b2

Consider this expression. For # = 0 on the diffuser axis there
obtains, on applying the rule of L'Hospital,
. , r
23 / ofrds
S
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At the diffuser wall for & = 1, 1t is seen that f = f_ and

3G
f o2tdE ~ —— = 1 (11)
A op2

which gives the relation between the integrals of the inertia forces,
the frictional forces, and the forces arising from the drop in static
pressure.

In order to estimate the shape of the curve of Iriction distribu—
tion across the diffuser for various signs of the pressure gradient, the

P
derivative -g-’-gk %—) will be found for £ = 1, that is, at the aif—
¢ I

O
Puser wall. Differentiating (10) with respect to f gives: \
\ - &
d<f) .2 G 2 [ o,
—_] - =3 2 - —— ~/ Eqt (12)
CANES ° |7¥ T 5E e2 A

Substituting € = 1 and bearing in mind that at the wall ¢ = 0 yields

H(E) ] --( )

For not too emall divergence angles of the diffuser, the sign of the
magnitude in parenthesis usually is entirely determined by the Ifirst
term. Thus, the sign of the derivative of the curve of fxiction dis—
tribution will be negative for G > O0; that is, for positive pressure
gradient and the curve of friction distribution f/fo = £(¥) will have
the form shown on figure 2. As 3, approaches =zero, that is, in

passing from the diffuser to the stralght pipe, there is obtained from
(10) bearing in mind (11):

T
_—-—=§
To




16 NACA TM No. 1137

that is, a linear distribution of the frictional stress., This straight
line, corresponding to the negative pressure gradient, is also shown in
figure 2.

It is natural to assume that the method explained is suitable also
for considering the motion in a converging pips where 3, < O. In thas
cage the point of intersection of the radial lines of flow lles on tae
other side of the section considered. Since r in this case will pe
reckoned opposite the flow direction, it folicws that

> 0

¥ 1%

although the pressure drops along the flow. Thus for the converging

’ N
pipe on the basis of (12), gj— ( £ ) will pe positive for & = 1
a £ 7
o

(fig. 2).

It is not difficult to conjecture, on the basis of the above dis—
cussion, that a diffuser may be imagined for which there 1is nc change
in pressure alcong the flow; that is, G = 0. The divergence angle of
such a diffuser will be determined on the basis of (11) asl

1 <
Y (p=const) = T (13)
5 .
> / o fas
(o)

K. XK. Fedyaevsky, n his paper on the boundery laver of a wing
(reference 2), has shown that Tor the external problem in the ahsence
of a pressure gradient alongz the surface of the body (flat plate) tre
derivative of the curve of fricticn distribution in the direction per—
pendicular to the suriace at the wall is equal to zero. IT is inter—
esting that for the diffuser this assumption is not fourd ito be correct,
According tc expression (12) the derivative of the friction distribution
at the wall in the absence of a pressure gradient along the diffuser —
that is, for G = O — is equal ¥o

1Such motion represents the boundary layer of an infinitely thin
flat plate set at zero angle of attack.
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B

p=const

The corresponding curve is shown on figure 2.

Consider what the shape of the curve of frictlion distyidbution will
be near the diffuser axis, that is, for € = 0. The first derivative
of the curve of friction distribution for £ = 0 is obtained from (12)
on substituting & = 0. ZEvaluating the indeterminate expression

3
1 .
lm - }r o7Eat -
E."’o 3 o
gives:
g
2 o q;?g o~
im =/ ofFkat = 2 1lim 2 = 0%
Eso 2 S v tso 28 " a

On substituting ‘n (11) there is obtained
ENERY _o | z-_c:r__]
tat \ g,/ J =0 " 70 m T RE

vhere ¢ is the value of the nondimensional velocity u/v% on the

diffuser axis, Thus, the value of the derivative of the curve of fric-—
tion distrlbution on the diffuser axis and, of course, also in the
generel case is not equal to zero. In the boundary layer, according
to the investigation of Fedyaevsky, this derivative Is equal to zero.
This sums up the conclusions which may be drawn from the incomplete
eguations of motion on the basis of the assumed hypotheses.
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2. Completion of Eguation of Motion

In order to obtain the profile of the velocity distribution across
the diffuser end the resistance law, it is necessary to render the fun—
damental equation (9) determinate by connecting in some way the general-
ized frictional stress f = Tr* with the remaining variables. This, as
usual, is attained by introducing some semiempirical assumption with re—
gard to the turbulence.

It is possible, of course, to take any one of the semiempirical
turbulence theories available at the present time (Prandtl, Karman,
Mattioli) and generalizé it to the case of the friction in a diffuser.
This generalization to a first approximation (evidently quite satis—
tory for small divergence angles) may be brought about by simply passing
from cylindrical coordinates to pclar. At first this method was followed
in an attempt to generalize the theory of Mattioli. The unusual com—
plexity, however, in the solution of the differential equation obtained,
the impossibility of obtalning the velocity profile in a finite form
suitable for practical application,l and so forth; made it necessary to
drop this method and seek another.

Still another consideration led to this resolve. All empirical
theories without exception are built on a very shaky physical basis.
Neither the assumption of Karman on the similarity of the fields of
velocity Tluctuations nor the assumption of Mattioli on the transport
of momentum can at the present time be supported by any but those
anthors, It is very significant that at the present time papersdevoted
to the analysis and improvement of these theories no longer appear. All
this indicates that interest in these theories has dropped sharply and
that they are now in the passing stage., On the baslis of what has been
said it mry be asked whether it is worth the effort, by overcoming the
huge cowputational difficulties, to generalize any of the theories men-—
tioned to the case of flow in a diffuser. Even after having overcome
all the computational diifficulties and having obtained excellent agree—
ment of the results of computation with experiment, no progress in
learning the mechanism of the turbulent motion will have been made, for
it would be very difficult to establish on what grounds the good re-—
sulte were obtained, whether on account of the correctness of the
generalized semiempirical tnecry or on account of the fact that the
varticular nature of the flow in the diffuser was already sufficiently
taken into account by the incomplete equation of motion. It would,

o~

however, be a mistake to think that the semiempirical theories cof

1Ag is ¥nown, even for the case of flow in a pipe, the theory of
Matticli leads to incomputable analytical quadredures.
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turbulence which have been mentioned have contributed absolutely nothing
to the understanding of the physical picture of the phenomsnon. It is
sufficient to recall that all these ‘theories lead to the same resistance
law for the straight pipe:

= L 1og(r, /Cp) + 4 (1)
F x /2
To Rup, .
(where Cp = =, Bp ===, R is the radius of the pipe, % and
v v
P2

A are universal constants), which is excellently confirmed by numerous
tests. This leads to the supposition that all these theories contain
some common element that correctly represents the phenomenon. In order
to explain what constitutes this common element, it is recalled that
Prandtl connected the frictional shear with the derivative of the mean
velocity by means of the relation

2
T =—=0p W' = — pl2 < g?—) (15

J

where 1, a linear magnitude denoted by Prandtl as the "mixing length"
(Mischungsweg), is a function of the distance y from the wall of the
pipe or channel. TFrom its meaning 1 should become zero at the wall
where no mixing can take place. Prandtl made the very simple and ele—
gant agsumption that follows from the pogsibility of developing the
function 1 = 1(y) into a series at the wall; namely, he assumed that

to a first approximation

1 = Xy (16)

vhere X, a universal turbulénce constant, is the first derivative of
the mixing length with respect to y at the wall, that is, for y =0

(Y

X = (g_) | (17)

J=0
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As is known, the assumption (15) led Prandtl to the "universal velocity
profile" and-to the resistance law (14), With the aid of the latter
the magnitude of X was found and ite absolute character established.

Since from other theories (Karmén, Mattioli) the same formula was
obtained, it is to be expected that for these theories condition (17)
is likewise satisfied - which statement will be proved.

As is known, Kérmén obtains a relation connecting the mixing length
with the derivatives of the velocity in the form:

T 1
2w 2
u P

1 =%
and the velocity distribution in the form:

Q, ~ 9= —;];-[.log(l - /——E) + ,/__E]

By finding the derivatives o' and ¢" and substituting in the expres—
sion for 1 there is obtained

1= 2R( & - E)
Differentiating with respect to £ gives
9-2-'=2x3( l_-—l)
at 2/t

By substituting & = 1 and remembering that d& = a(1 - y/R) = — dy/R

there is obtained
(gl) =X
. dy y=0

as was to be proved.
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To verify expression (17) according tc the theory of Mattioll;
- equation (15) is solved for ' I and differentiated with respect to ¥,
where

|

et -t by T
v e sirm w(m) e
‘ R dy dy |

Introducing the variables ¢ and ¢ yjields:

®o LI

As is kmown, the theory of Mattioli for larce Reynclds numbers leads to
the following relations:

\ XE i Oy~ 9 — P B = constant
(a) Q' =ce , where A = -~ -
: ¢ = constant
1 4t 1t
(v) - e
3 a®e ’ (p'.’. e

Making use of these relations gives, from the expression for dl/dy,

r / N 3
1ty e O\ _ 1 J
//E L \ cexa / _céXD

rem

Since for the case where the viscosity 'is neglected (large Reynolds
numbers), the velocity at the wall approaches o ,
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Iim@® = ¢
E-»0
lim © =0
@-—-aOO ce
( at \) =X
N qv §=l

as was to be proved.

It is thus evident that the fundamental element common to the fore—
going theories is the fact that the first derivative of the curve of
the mixing length against the distance from the wall has at the wall,
or more accurately, at the edge of the laminar layer, a constant abso—
lute valuve X independent of any variables.

Since the resistance Tormula, which is a consequence of this
assumption, is in excellent agreement with the experiment, it may bde
considcred that alsc for the diffuser and, in generzl, for any turbulent
flow near the wall

Moreover, numerous experimental investigators (Donch, Nikuradsce,
Frietsche) have egtablished iwo further zignificant facts: (1) the

N
) = X = constant

y=0

Zie

1 oy N
curve §-= f K % / is found to be alrwst absoclute near the wall for

the most varied cases of flow and (2) on the axis of the channel or pipe

or on the edge of the boundary layer = constant & 0,14,

e

On the basis of all that has been said, it is not necessary in the
pressnt paper to maeke use of any developed hypothesis of turbulence ex—
cept the formuia of Prandtl (15) but & method will be used that permits
obtaining the simplest and clearest resultis.
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"

Up to now 1t has been understood that T vrepresents:the total
frictlon@l stress:

T = Tiam + Tturd

As earlier investigations (referemces 1, 3, and 4) have shown, it may be

consldered that for practical Reynolds numbers the effect of the viscous -

Triction is negligible in comparison with the turbulent friction. "For
this reason, in what follows, by T will be understood only its turbu—
lent part.

The formula of Prandtl will be reduced to a form independent of r.
On assuming, according to the foregoing discussion, the ratio 1/R
(where R is the local radius of the diffuser cross section, R = rd,)

independent of 1, to be a function of 9 , from equation (15) there is
obtained . '

N,

2. 2/1 V¥ 1 <a_t\2 ( dt\a
T=-=pr?d (— e )
o \ g Y, rsaoe. xS 4

It is seen that on the basis of the assumption of the absoluteness of thée

curve L (&) it was found from the formula of Prandtl that the tur—
R

bulent part of the frictional stress, in the same manner gs the total
frictional stress, should be inversely proporticnal to r .

The farmula of Prandtl is reduced to nondimensicnal form by letting

= b
1 2 2
~{ =z ]
<:R ) ?

d .
where o' = E% . Substituting the expression obtained in the fundamen-—

tal equation of motion in the form of egnation (9). gives

. Gt 1 /1 42 ' :

° ob

anl
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It vill be necesgary to obtain ( %\, = £(£) 1in the form of a power

function

=at®+m (19)

0 o

vhere the unknown constants a, m, and n are obtained from the fore—
coing considerations: .

(a) for ¢ =1 (gt the wall) é'= 0
(v) for & =1 (at the wall) %l = - g;-( Liox
” ai \ R~
(c) for & =0 (at the axis) % = 0,14
By meking use of the firsi condition there is obtained
a+m=0 (1)

Differentiating (19) and substituting & =1 according to the secomd
condition gives

an = - % (II)
According to the thaird condition,

m= 0,1k (111)

Therefore, a = ~-0.14% and n= - — = -——— ., Since the value of X is

usually of the order of 0,43 to 0.4k (according to the resistance law
derived for the pipe), the approximate resuit is:




e
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~

na 3
and the required function %-= £(t) will be a cubic parabela
1 X 3
~==(1-¢t)
R 3

By substituting the obtained relation in the fundamental ecuation (18)
there is obtained a differential equation the solution of which ghouvld
give @ = ¢ (&), that is, the curve of velocity distributicn:

(x4

2 r ¢ X% (1%
ol oPra = —— g —

2b% 98, £

e 9'f (21)

o

3. Velcelity Distribution

Integration of the obtained eguation in finite foim is not possible.
For this reason it is necessary to wvroceed to an approximate integration.

By integrating the inertia integral on the left in the form of a power
relation and setting

z | p2tat = J
it is assumed that

J=a; + my £X o (22)

The constants a; and m; will be detexrmined from the boundary condi~
ticns for J. For & =0,

for ¢ =1
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1
J = [ @°tdt = constant = J,
o

Then
o -2 | .
s - I Pm
1 T Yy T T
( 2
a; + My = Jo J
and

cp2 CPZ
J:-—E——+<Jo.—_.rg'_>gk
2 2

It is practically more convenient in the preceding expressions to pass
from the universal velocities ¢ and ¢, to the nondimensional

u Q

Uy m
which are directly measured in the tests. On dividing the above expres~—
sion by op]f1 and letting

3 2
v / N
I=._.~L=L/ (2 e
2 2 . um A
P® 7 m
there is obtained
1L, 17,k
2 \ »] 2,.

Substituting in equation (21) the expression for I and solving for the
Tirst derivative of the nondimensional velocity yields



\_,q
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According to expresaion (11)

-

G

o) 2
— = g,aoq)m IO e
2b

Substituting this expression in equation (23) ylelds

———

5 (2k)

&
]

dg 3/ 2 - k,
a ~'£3//ﬂo Py (T -2I )1 -E7) +1 1

The expression B o 2(1 - EIO)_ complptelj characterizes the fléw state
in the diffuser, since it. takes account both of the geometric (00) and
the dynemic parameters ¢p and I, depending on the Reynolds number.

let
VP (L — 2Ig) =D

and denote this nondimensional magnitude as the "diffuser parameter."”
It is not difficult to see that for the "zero diffuser" (pipe) D = 0.
For the case of flow of an ideal fluid in a diffuser, that is, when the
velocity does not depend-on £ and at each.section u = up,

2 .
) I= ] 314 ='}'
2

4 o

1The minus sign before the square root is chosen fyrom the consider—
ation that over the entire range of variation of & the derivative,

E— is less than zero.
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In the case of g.diffuser.and a converging pipe with turbulent flow

where in caomputing I, the function L entering the integral is al-
Y
ways less than unity, the result is

(¢]

I, < =
2

for which reason D > 0 for the diffuser and D < 0 for the convergent
pire (9, < 0). Integrating (24) with respect to £ gives

¢
JE v D1 %) 41
@m-4>=,%f l(§3)+ ae (25)
s _

Nothing, as yet, has been sald regarding the value of the exponent
k in the integration of the inertia integral. It is convenient to pro—
ceed as follows: Assuming any value of k, to compute the integral

(25); then, having the relation E— = f(€), to set up the values

m
I = f(&) and choose a new value for k in better agreement with the
foregoing relation. By repeating this process several times it is not
difficult to arrive at a value of k which best satisfies both expres—
sion (25) and the approximation I = £f(f£). By this procedure, however,
it is necessary to compute the integral (25) graphically, since finite
computation ie possible only for a few values of k.

In attempting to obtain the velocity distribution formula in finlte
3

form, it was assumed that k = 5 which, as will be seen later, is in

good agreement with all the conditions discusgsed. For k = % the in—

tegral (25) is obtained in finite form by the substitution

o (2-8) v

leading to the integral of & rational fraction. Without golng into de-—
tail, this gives the final result:
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(x+ 1)(/ D+ 1 ~1) e -1 x
—~p =2 -2,/ + 1 |tanht —F——
*n X.{ (x -1/ D+ 1+ 1) SBL [ o v/ 2D + 1
~tan 2t -’} C (26)

2D+ 1

The proposed method of approximating the mixing length function by
a cubical parabola -gives & very simple law of velocity distribution for
the straight pipe. Setiing in expresszon (25) D=0 and carrying out

the integration gives for the pipe

3
cpm—¢=§tanh*l<§2> (@

.This very simple formule, as will be shown in part II, is excellently

verified by experiment.

It is of interest that the absolute character (independent of the
Reynolds number) of the velocity distribution profile in the form

Py — @ = £(E)
in the case of the pipe does not hold for the diffuser, for which case

the "diffuser parsmeter" depending on the Reynolds number enters the
velocity distribution (formula (26)),

4, Resistance Law
To make use of the foregoing derived formula for the velocity dis-—
tribution in the diffuser, it is necessary to be given the diffuser
paramster

D = 3.9, (1 — 2I,)

that is, the values I, and ¢#. The value of the inertis integral
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(LY

will be known, since the veloclty profile is known, It is suggested
that an approximate value for Ig Tfirst be assumed and then, having
obtained the profile (26), to correct this value. Generally the succes—
sive approximations converge very rapidly, since the values of I,

depend little on the shape of the velocity profile.
It remains, for computing D, to assume the value qm'= EE , which
v
*
must be assoclated with some characteristic of the flow, for example,
the Reynolds number. This means that 1t is necessary to find the re-
siptance law,

To obtain the resistance law, the soclution obtained must be con-
nected with the laminer layer npar the wall. Since in the laminar layer
only the effect of the viscoelty should be assumed, consider where thease
equations lead to if the v;sc081ty friction is con51dered instead of the
turbulent friction.

By retaining for the present the assumption of radial flow (¥ = 0)
also for the case of the laminar sublayer it is found that the intensity
of the leminar friction is expressed as

1l du 1l 4t
T Tl = === e S =2 28
. lam r & JERT (28)

The assumption of radial flow leads to the result that the laminar i'ric—
tion, in contrast to the turpbulent, varies inversely proportionally to
the third, and not the fourth, power of .

The equations of the laminar motion on the assumption of radial
flow, on the basis of the fundamental equations and the above expression
for the friction,become

2t? 1 92,3_[9:3__1. g_t_]
1 op ov o at
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On eliminating the pressure p hy the method of cross differentiation

there is obtalned after dividing by %:\:

I r -
bpar ) &% gab 4 (1 ad
r 4o 683 a? av 9 ad

.In the foregoing expression the right side does not depend on r; whereas

the left side is inversely proportienal to r. This absurdlty clearly
shows that the viscous fluid cemmot flow radially in a conical diffuser.
With this result, it becemes evident that radial flow in a turbulent
fluid is, strictly speaking, impossible because the internal friction in
a turbulent fleow is the sum of the turPbulent and the viscous friction.
It is not difficult to see, however, that the deviation from radiallty
in the main body of the flow should e negligible, heing of the game
order of smellness as the proportien of the viscous friction iz to the
total friction. In other wordas, “he flow in the diffuser may be thought
of as a gtrictly radial, "purely turbaleont” flow with guperposed. small
nonradial disturbonces arising from Lhe viecosity.

The greailest deviution from radiality should be expected near the
wall where the proportion of the wviscous friction is particularly large.
In order to form a very apnroximate picture of the flow in the laminar
sublayer the following reasoning is given., It has been seen that for
the redizl flov assumption valid in the main hody of the flow the total
friction should, on the baszig of the Reynelds equations, vory inversely

. 4 . o -
proportionally to r . On the other hand, on the hasls of the Prandtl
formula and the agsumption of universality of the norndimensional mixing
length curve the puvrely turbulen®t part of the friction should likewise

. : p

be inversely proportional to r . This Justifies the assumption that
the laminar pact of the Triction should have the same property with the
gsame denree of accuracy. With the object of obtaining e smooth profile
of the friction distribution, it is permissible to extend thio proverty
also to the purely laminar layer, that ig, ascume that '

1e

1
T ~—T
lam o

\

In this way, the assumption mode in solving the problem of the turbulent
flow in a straight pipe is extended. Tt was assumsd there that ot the
wall there 1s a viscoug layer the motion in which is subject to the
equations of a viscous fluid, but the value of the friction at the wall,
entering as a boundary condition, is determined by bthe turbulence law
(resigstance formula). Here, by extending the foregoing assumption,
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it is considered that not only the value of the frictioﬁ at the wall but
also the lew of the distribution of the friction along the diffuser is
determined by the main turbulent part of the flow,

In the laminar layer, the intensity of the frictional stress in
terms of the derivatives of the'velocity in spherical coordinates is
expreseed:

m (L, 1A )
(iam k r 39 »r dr

) T

* On substituting, on the basis of the above assumption, Ty, = ~%%E s
it is found that for the obtained expression to be independsent of r,
it is necessary that in the laminar layer the velocity components u
and v Ybe inversely proportional to rs, a condition which also does
not contradict the continuity ecuation. Thus, near the wall there
should occur a somswhat more rapid decrease in velocity along the &if--
fuser than in the regions with rapid flow. With the velocity near the
wall decreasing more rapidly, the direction of the component v, from
considerations of continuity, should be from the wall to the axis; that
1s, the direction of a line of flow near the wall deviates from the ra—
dial dirsction inward.

The angular deviation -of the lines of flow from the radial direc—
tions (very small, of course, in absolute magnitude) neasr the wall
where the effect of the viscous friction is large may be comparable
with the small divergence angle of the diffuser. In this case it is to
be expected that this deviation may affect the main turbulence of the
flow in which the mean velocity vectors deviate somewhat from the ge—
ometric radii, The problem of the deviations from the radial direction
in part IIT of the present paper will be considered later.

It may be well, now, to proceed with the direct derivation of the
resistance formulas by the general method of considering the velocities
at the boundary of the laminar layer. The velocity distridbution
u =f(d) in the laminar layer is assummed to be linear:

“(@a\ .

oy /y=o

vhere y 1is the distance from the wall. This formula corresponds to
keeping the first significant term in the development of the function
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u = £(y)
in a series, a procedure which is entirely permissible in view of the

extremely small thickness of the layer. Substituting

¥ = r(ds —=8) = r8,(1 - ¢)

and expressing <:§E ) through the frictional shear at the wall:
(é&) cTolfo b
T a7 4
oy y=0 PV rpv rv
glves
b9,
u = —— (1~ ¢) (29)
rv

The thickness of the laminar layer is asgumed to follow the weli-—knhown
law of KérmAn:

o

]

o)
A1

1
where, according to Karman's assumption, a 18 a universal constant,
The value & = £* corresponding to the edge of the layer will then be

B Yr

E¥ =] = e = 1 — @ e
rﬂo bﬁo

—pe -

1as K. K. Fedimeveky has shown, the assumption of the constancy of
o corresponds to the assumption of the constancy of the critical
Reynolds number computed for the thickness of the layer. There is
therefore every reason to expect that in passing from the pipe to the
diffuser the constant o does not appreciably change,
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The nondimensional velocity ¢ = E— at the edge of the layer is ob—

tained from equation (29) . v¥
u bﬂ
95 = = =—2(1- E*) =a
Ve v

The equations

and,

will be substituted in the formula for the velocity distribution (26).
First of all, to find x = x* corresponding to £ = ¥ apply the ap~
proximate expression for the sguare root as is always possible because

. v
of the extreme smallness of the magnitude a X compared with unity.
. . Bl
There is obtained: o)

/ ER D S
x* = VaRAR E¥2 4 1R 4+ ~{ 1 -t
2

By proceeding similarly with the power of £* +there is obtained

3

E“‘Ea’l-—;- avr
bﬂo
and
Da,
x* & ] 4 2 _;Xr_
biy
In substituting x = x* in expression (26), the term 3 Dvr in com—
3
o

'parison with unity will be neglected .throughout except of course, the
term x — 1. There 1s obteined:
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b, 2o 3l D+ 1+ 1)
vr 8/ D+ 1~1)

N

-1 - . \
2 /B7I{ tamn -—.,-l——---—-tanhlr-——g-t—-]-'-—)_‘

/ 2D + 1 / 2D+ 1 7

The resistance coefficient and the Reynolds number are introduced as was
done in the solution of the problem of the flow in a pipe. In analogy
with the case of the pipe, let

o]
Cp = ~nx
on
2
and
R, = _EL
m oy

where R = rBO is the local radius of the circular cross-—sections of

the diffuser, This'gives

By substituting in the preceding expression and passing frem hypérbolic
functions to logarithms the resistance law for the diffuser is obtained:
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-

i .1 ~ log (Rm.,/E;) + A

/Cq X 2 -

wvhere
A= ‘1,___g-1og<3°°‘/2 ‘D:_;lﬁ*lb> y
s X2t : 8" VD+1l-1 | (30)

(1+v 2D+ 1)(/ 2D +1 - /D + 1) "

+/ 2D+ 1 log ——— -
(/D +1-1)(/D+1+,/D+ 1) "J

On passing from the diffuser to the straight pipe, that is, setting
D =0, there is obtained on evaluating the indeterminate expression by
the rule of L'Hospital:

l —
= —2—10g (R, ,/Cp) + A
v/ Cf i ‘//2
where . (31)
A= __ 1 log jo /2
2 /3 b

As may be seen, the form of the resistance expression for the diffuser
and that for the straight pipe is identical. It is very interesting
that the diffuser parameter enters only into the makeup of the free
term A and has no effect whatever on the terms contalining the resist~
ance coefficient and the Reynolds number. This is not entirely
unexpected, because the resistance formula results from the shape of
the velocity distrlibution curve near the outer boundary of the laminar
layer, where the elfect of the inertia forces is negligible and the
mixing length, as in the case of the straight pipe, increases propor-—

; tionally to the distance from the wall.

The numerical value of the free term A wusually is determined
experimentally for the pipe. As is known, the vaiue of A is abso—
lute, that is, independent of the Reynolds number, and is of the order
of 4 to 5.1 ‘

*According to the tests of Nikuradse, A = 4,88; according to the
precsent tests with the straight pipe A = L4.01.
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There is every reason to expect (since the form of the expression for
the resistance is the same as for the pipe) that the absoluteness of A
extends also to the diffuser, while a variation is possible in the
magnitude of « which for different values of the parameter D will
be obtained as a solution of the transcendental eguation

A = f(a, D) = constant

The circumstance that the diffuser parameter D, which takes account
of the effect of the inertia forces, does not enter the variable terms
of the resistance formula leads to the conclusion that the form of the
expression is not dus to the approximation used above for the inertia
integral. If it were possible to solve accurately the fundamental dif—
ferential equation, the same form of expression would be obtained for
the resistance formmla.

The approximations assumed for the mixing length and inertia in-
tepral show up only on the free term. For this reason, no far reaching
conclusions will be made with regerd to the dependsnce of @ on D1
or physical explanation of this denendence, particularly since for
practical computations not @ but A is required, which in any case
is obtained from experiment.

It is necessary to make one more remark with regard to the resist—
ance formula. The Reynolds number entering the formula

_BRuy  1dp Tty S tp

n 2
v rov v

Re

is variable along the diffuser length. The friction coefficient, how—
ever, according to the assumption of radial flow should not vary over
the diffuser length:
Ta 2fo 1‘4 2f o

= =

b 2 4 2 2
. 5 Pup r oty pty

Cr =

This lack of correspondence 1s obtalned as a result of the Toregoing
assumptions in considering the viscous friction at the wall which dis—
turbs the radial character of the flow. The error thus obtained is
vanishingly small. For small divergence angles of the diffuser the
Reynolds number Rep varies so little over the diffuser that Cr,

™ ——

It is seen, for example, since D = f(Re) that also a in the
diffuser will depend on the Reynolds number, that is, no longer be an
absolute constant.
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depending on the logarithm of Rey, undergoes quite.a negligible change .
I1. EXPERIMENT AND COMPARISON WITH THECRY

In order to check all the sssumptions made and yesults obtained in
the preceding part, a series of tests were carried out on two conical
diffusers with divergence angles (angle botween axis and generator of
cone) of 19 and 2°, In comparing the experimental with the theorstical
results it was assumed that the compgrison of the velocity and pressure
distributione was of greatest importance. For this reason the experi—
mental determination of such secondary iactors as the frictional dis—
tribution over the cross section of the 4iffuser, the distrivution of
the mixing length, and so forth, were entirely omitied on the assump—
tion that agreement or disagreement between theory and experiment for
the main factors implies also the corresponding condition for the
secondary factors.

(a) Test Sectup

The diffusers on which the tests were conducted were of plywood.
construction having sheete, curved into conical segments, which were
attached by wooden rings the internal diameters of which as far as
possible were determined by accurate computation. The wooden rings
were connected to each other by stringers disposed over the generators
of the cone. The entry opening of the cone had a diameter of 240 mil-~
limeters and was connected by nmeans of a transition piece with the
cylindrical pire previously investisated (reference 1) havine a length
of about 50 calibers. The &iffusers were sach & meters long. Behind
the diffusers was placed a 2-meter section of a straight pipe having
the diemeter of the outlet section. This section was followsd by a
short accurate converging pipe that reconducted the flow into the pipe
of 24C-millimeter dilameter. The latter pipe with the aid of two elbows
was connected to the suction chamber. The inner surface of the diffuser
and of the transition lengths was covered with shellac. The entire ap-
paratus was suspended from the ceiling of a long passage of the lab—
oratory. The lines in the diffuscr cross sections along which the mean
velocity distribution was measured lay in the horizontal plane passing
through the axis of the arparatus. The Tirst section was located in
the center of the forward transition piece. The distapce x, in
meters, between the succesding sections measured from the first is
given in table I.
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Segtionile 3] v |56t 71 8] 9 | 120] 12]12] 13
|

x ol1] 2|2.2]|2.4{2.6{2.8/3.0{3.2(/3.4]/3.6[3.8]%4.0

In distributing the sections along the diffuser it was assumed that
over a certain portion beyond the transition pipe no typical diffuser
flow will be observed to which the essumptions made in part I were ap—
plicable. Over this portion there will be a gradual transition from the
conditions of flow in the straight pipe tp the conditions of flow in the
diffuser; that is, there will be a kind of diffuser entry length
(Anlaufstrecke). On the basis of this fact, the main sections 3 to 13
were placed in the middle part of the diffuser., The test, as will be
shown, Justified these asswaptions.

The velocity distributions were measured in sections 3 to 13 with
the a2id of the same pitot tube used in investigating the velocity dis—
tribution in the cylindrical pipe and the same coordinate apparatus
(reference 1). Since the openings, through which the stem of the tube
passed into the diffuser and came out through the opposite side, were
made along the normal to the inner surface of the diffuser, the tube
stem was slightly curved. It thus seems reasonable to assume that the
velocity distribution was measured over the arcs of circles of greater
radius, approximately corresponding to the arcs measuring the angle 3.

To measure the static pressure distribution alcng the diffuser, the
usual system of brass tubes was mounted along the bottom stringer. The
tubes were placed 200 millimeters apart from section 1 almost to the end
of the diffuser.

(b) Tests

The velocity distribution in the chosen sections of the diffuser
was measuyred for a single waximum discharge rate of air. The velocities
were measured in each section from wall to wall, in order to be able to
Judge to some extent the axial symmetry of the velocity profiles. The
points at which mesasuremente of the velocilty were made in each cross
soction were more often near the walls than near the diffuser axie. In
testing, two micromanometers were read, cne connected with the pitot
tube (hv)’ and the other a control (hc) connected with a static

tube placed in the cylindrical pipe ahead of the diffuser. After trav—
ersing each section of the velocity profile, the pitot tube was placed
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on the diffuser axis and the air discharge was varied from zero to the
maximum with the aid of the iris diaphragm at the chamber, Simultaneous
readings were taken on the velocity (h,) and control (hc) manon—

eters, and the megnitude was computed:

A= EE (32)

b,

vhich for each section was plotted as a function of h,., It was thus

possible to compute the absolute value of the veloclty at the diffuser
axis as a function of the reading on the control manometer:

//2’ E
Uy = - . YE- A D
m= g Ky V5t c

where

T60{273 + &)

p = 0.125

is the density of the alr with corrections on the temperature of the air
and the atmospheric pressure; )

F, end k, sine of angle of inclination of mepomster tube and

v

coefTicient of manomeiter, respectively
Er ccefficient of pitot tube
4 density of epirit in menometer

Thus, by instantaneous reading of two manometers, it was possible
to determine the veloclty at any point of any section as a fraction of
the velocity at the diffuser axis in the same section:

u / B

um__ // Ahc
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In determining the velocity distribution by this formula, near the
diffuser walls a correction wes made for the effect of the walls on the
readings of the pitot tube. It is known that the presence of a wall
near the stem of the tube givas rise to a certain inerease in the ve-
locity between the stem of the tube and the wall, and this leads to a
drop in the static pressure and results in an increase in the manometer
readings above the true valués. The correction was applied by multi-
plying the radical on the right side of this formula by the correction
coefficient ¢. The dependence of this coefficient on the distance ¥
from the wall to the center of the front opening of the tube is shown
on figure 3. This curve wae obtainsed from tests in the straight pipe
(reference 1) where ‘the velocity distribution near the wall was measured
both by the pitot tube and the totel pressuyre micro nozzle, on the read—
ings of vwhich the effect of the wall was vanishingly small, The test
points on figure 3 were obtained for various Reyrolds numbers, As may
be seen, with increasing distance from the wall the values of § rap-
idly sapproach unity.

In addition to the correction near the wall, a correction was made
for the change in diffuser cross section caused by the stem of the tube
in determining the absolute value of the velocity up on the diffuser

exis. This correction coefficient p was determined as:

5~8
it
o= — =k

5

2, 2
where S = nr 95 circular area of the diffuser cross section,
Smp = 2rd,d part of diffuser cross section taken up by stem of tube

(d& diameter of tube)., The Justification for applying the correction
by this method is given in a paper on tests on a pipe (relference 1).

The distribution of the velocity ratio Y. for the various sec—
Um
ticns of the diffusers of 1° and 2° is shown in Tigures U4 and 5, where
the magnitude .

is lald off on the axis of abscissas. The values 2z and z,, the

lengths of the arcs of the circles having their center at the vertex of
the cone and passing through each section, were read off directly with
the coordinate apparatus by divisions carried on the stem of the pitot
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tuhe. On these figures the velooity curves are shifted upward with re-
spect to each other., The dots and circlesg dencte the measurements at
the right and left halves of the veloclity profile.

In exemining these curves there is observed first of all that: (1)
The symmetry of the profile with reswmect to & vertical plane is suffi-
ciently good (the dots and circles are not very far removed fiom the
mean curve),(2) the assumption in part I on the similarity of the ve—
locity profiles for sections 3 to 13 18 observed to be well satisfied.
An exception occurs in the case of the 19 diffuser for =ection 5, which,
for an unexpected reason, drops out of the general series,

Of interest on the above curves are the velocity distributions for
sections 1 and 2. The latter distributions (especially for the 20 qif~
fuser) clearly indicate the transition region from the straight pipe to
the diffuser. FHere, it should be remarked that the velocity distribu—
tion in section 1 is not charactseristic for the pipe and is also
transitional, since it must be supposed that the effect of the diffuser
extends somewhat ahead into the pire. On the basis of the assumption
that the shape of the velocity prefile is entirely determined by the
static pressure gradient, it may be said that the region of Influence
of the diffuser on the pipe will extend invo the latter up to a point
where the pressure gradient in magnitude and sign will agree with the
corresponding value for the pipe.

After measuring the velocity profiles over the diffuser sections,
pressure distribution measurements were carried out with the ald of the
above-mentioned system of static tubes. The measurements were made for
five discharge rates for the 1° diffuser and eight discharge rates for
the 2° diffuser.

The results are given on figures 6 and 7, where the lowsring in
pressure in kilograms per square meter is plotted as a functlion of the
distance from section 1. As mey be ssen, in both diffusers there was a
positive pressure gradient. The static pressure distribution trans—
verse to the diffuser was also measured. No pressure gradient with re—
spect to 3 was observed. This complsted the test progran,

(¢) Checking of Fundamental Assumptions

The confirmation of the fundamental assvmpiion made in constructing
the theory, namely, the assumption of radial Tlow will be discussed
first. On applying this assumption to the equation of continuity, the
result (formula 5) that the product ur? should not ve a function of
was obtained. The values of this nroduct on the diffuser axis where
u = Wy Will be computed. In tadbles 2 and 3 are given the values of wupy
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and r for both diffusers for mavimum discharge rate, and the products
_ are.computed. The values of upy for the various sections of each dif-
fuser, with the aid of the curve A = f(hc), was reduced to & single

reading of the control manometer, that is, to a single discharge rate.

TABIF II.— VAIUES OF r, uy AND upr® FOR 1° DIFFUSER

i?g; 3 4 5 5 7 8 9 10 |11 |12 {13

(;) 15.73115.93116.1316.33[16.53116.73|16.93(17.13(17.33]17.53 [17.73

Um

(m/sec)21'° 20.2 {19.9 {19.75(19.1 [18.7 {18.5 {18.05(17.70{17.34[16.9

umpa 5200 5130' 5190f 5270| 5225| 5225| 5310| 5300 5320| 5340{ 5310

TABIE IIT.— VAIUES OF r, wy AND wgz~ FOR 2° DIFFUSER

i . ] i H |

S 3 | w5 | 6 17 | 81 910 |1 {1 13
i i
(;) | 8.88| 9.08| 9.28{ 9.48 ¢.48| 9.88]10.08}10.28{10.4810.68 {10.88
! (
o !

l|’ L OR!
(m/sec +8-30|17.80]17.18 16-55513-18 15.50{14.95;1k4.50|13.66]13.17 [12.63

!
ugr~ | 1443 1470} 1580 1500, 1518 1515; 1525{ 1540| 15001 1500 1500
! i

n

For greater clearnessgs the values of the product umxz are plotted
as a function of x in figures 8 and 9. As may be seen, the product
umpa does not remain constant but increases in a regular manner along
the axes of the diffusers. The regular character of the increase in
umra indicates that the cbtalned result is not due to sxperimental er-

ror but to a certain regular disturbance in the radial character of the
flow that arises from the effect of the viscosity. The difference
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between the maximum and minimum values of umrz 45, however, gufficient-
ly small and does not exceed 4 percent for the 1° aiffuser and T pexrcent
for the 20 diffuser. The regularity of the increase in wyr® is broken
only in the last sections of the 2° diffuser, vhere evidently some other
unaccounted~for effect enters. It is possible that the irvegularity at
these points may be due to some error in the test setup.

Thus the radiality of the flow at the diffuser axic (and therefore
also over the entire region of the flow) is satisfied only with a cer-
tain, though rather large, Gegree of approximation. A more detailed
discuseion on the radiality of tne flow will ve given in parL 11T of
thie paper. For the present, however, the obtained increasing values

2
um?2 = £f(r) will be replaced by mean_constant values (uyr ). Onm
figures 10 and 11 the values of {upr );m 8re plotted and the mean
values indicated for various discharge rates for both diffusers.

Another method of checking the radiality of the flow is to study
the increase in the static pressure along the diffuser. In the first
part the result was obtained that in the case of radial flow the gen-—
eralized pressure E -~ Tnpe should vary along the diffuser according to
the law

&
2]

1 i G N
— ( Pig ~ 8;4— J (formila &)
(o]

At the wall, that is, for £ = 1, +the pulsations should die down
(Tpp = 0) and py = p. Thus, in the case of the correctness of the
foregoing law of increase in nressure, there should in plotiing p as
a function of 1 e obtainesd straight llnes the slope of which is
r
determined by the value of G:
T X
G =~ = (33)
o a(r 7)

This plot for the two diffusers is shown on [igures 12 and 13. As may
be seen, the law expressed by formula (&) is exceliently confirmed.

The varlous straight lines on these fisures corvespond to the values
(umr Jm on the previous figures. For each straicht line is indicated
the valve of G determined by formula (33).
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In measuring the pressure distribution Pfor the 20 diffuser use was
made of a more improved system of manometers .as compared with that used
for measuring the pressure in the 1° diffuser. Because of this it was
possible in figure 13 to plot the -test points directly, while in plot—
ting figure 12 the values of the pressure had to be taken from the
comparison curves (fig. 6). This explains the greater scatter of the
points on flgure 13 as compared with figure 12.

On these curves the values of x corresponding to the mections at
which the velocity distribution was determined are indicated velow. It
is of interest that the pressure varietion law is confirmed over a con-
siderably greater length than the law of similarity of velocity
profiles, This should aleso be the case since according to equation
(11) the value of the magnitude G characterizing the change in pres—
sure depends not directly on the velocity distribution but on a certailn
integral of this distribution which should not be wvery sensitive to a
change in the velocity profile. :

{(d) Check of ithe Velocity and Resistance Laws
On figures 14 and 15 are given the comparison of the experimental

and theoretical profiles 2- = £(&) of the velocities determined by
um

formula (26) for the maximum Reynolds numbers attainable.® The value

of the diffuser parameter D for the computations by formula (26) was

determined to a first approximation by the formula

2
D =30 (1 ~2L,)

where the value of I, was computed with the aid of grapnical integra--

tion of the mean experimental velocity profile. After obtaining the
theoretical profiles shown on figure 1k and 15, the value of D was
coryrected by: determining I, from the computed theoretlcal profiles.

The second approximation for D differed so slightly from the first
that further aporoximations of the velocity profile secemed superfluous,
The value of @y entering the formulafor D was determined as

.
/2
(Pm = ==
s
v Cr

¢ ]

1 N . '
Note the transition here from the values @, — ©® to the values

3; , determining @ according to the resistance law. .
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from the derived resistance law (30), vhere the value of the absolute
constante X -and A, on the basis of tests with cylindrical pipes,

were taken as
D4
rad

1

0.434
and

A=lkol

1}

The Reynolds number Rep, was determined as the mean of the
Reynolds numbers

2
My Solupr p
Rem = = -

v v

" over the diffuser sections. The possibility of this averaging was jus—-
tified by the fact that the change in Rep along the difiuser
practically had no effect on the values of Cp and .-

The final values of D and P for both diffusers for mean

Reynolds numbers were obtained as:

For the 1° diffuser Rey oy = 178,000 qp = 26.65 D = 2,27

177,000 @ = 26.55 D = 5,56

1t
L}

For the 20 aiffuser Repy av

According to figures 1lh and 15 it may be stated that the theoretical
formula setigfactorily agrees with the test results. Some deviation is
observed in the middle portion of the curve where the test points have
a tendency to drop below somewhat, The reason for this deviation must
be sought apparently in the fact that the actual distribution of the
mixing length in the diffuser differs somewhat from the cubical parab-
ola assumed.

Te illustrate the degree of accuracy of the solution of the funde-
mental differential equation by approximeting the inertis integral by
the exponential relation *

figures 16 and 17 are presented, where the continuoug curve gives the
above integral and the points give the results of computing I by
meang of the graphical integration of the obtained theoretical curve of
the velocity distribution. The discrepancles between these values of

I are so small that it mey be affirmed that the degree of accuracy of
the golution of the fundamental differential eguation by this approxi-
mation is sufficiently high.
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the velocity distribution. The discrepancies between these values of
I are so small that it may be affirmed that the degree of accuracy of
the solution of the fundamental differential equation by this approxi-—
mation is sufficiently high.

It is very unfortunate that formula (26) does not enable the an—
alytical computation of the values of the inertia integrel, since the
problem reduces to incomputable quadratures. Otherwlss by expressing

Io in terms of D hy means of the above integration the dependence

"of D oould be found only on the Reynolds number and the divergence

angle of the diffuser.

As an illustration of formula (27) of the velocity distribution
for the astraight pipe (zero diffuser), figure 18 shows the regults of
the tests in the pipe as given (reference 1) and, as may -be seen, for—
mla (27), for the values of ¥ chosen on the basis of the resistance
law, is in excellent agreement with the test results. It is in-—-
tereating to note that the cvurve reyresenting formula (27) lies very
near the curve drawn according to the theory of Matiioli, which until
now of all semiempirical theories vest agrees with sxperiment. This
congideration is of great ilmportance since formula (27) is extremely
simple; whereas the theory of Mattioli does not leed to any finite for-
mula at all, and to draw the velocity distridbution it is necessary to
carry out a graphical integration.

For checking the resistance formula in the usual manner by com—
paring the theoretical and experimental laws of variation of the
resigtance ccefficient with the Reynolds number, it would have been
necessgary for to find the experimentel values of the frictional shear
at the diffuser wall. It was considered illogical to carry out the
above operation, since it would then be necessary again to make use of
the theoretical egquation of motion thatv gives the relation between the
friction, the inert-a forces, and the pressure gradient, For this rea—
son it wae considered ol greater interest to compare the theoretical
value o the magnitude G, characterizing the increase in static pres—
sure along the diffuser, with the corresponding test values obtained by
measuring the slopes of the curves on figures 12 and 13.

The theoretical value of G may be obtained from equation (11):

<ea fcpEdE-—l\ 213 \41 1 >

Bq>m

/ N\
% ( 226 ~ —% - (31)
h 0P m
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2 o
where t, is no other than the value (u,r )y, depending on the rate

of discharge of the fluid through the diffuser, that is, on the
Reynolds number ’ i

(s 2) _ ( RGRFY_ N
Ut /m =\ .

N ‘1

By integrating the theoreticel velocity profile, I, 1is detérmined;
@, is determined as a function of the Reynolds numoer according to the
resistance formula.

Thus, expression (34) is the theoretical dependence of G on the
Reynolds number while expression (33), which determines G by the
slopes of the test curves, is the corresponding experimental dependence.

On figures 19 and 20 are given the curves of the theoretical and
experimental relations G = f(ty). 2As may be seen, in both cases the

teat points lie below the theoretical curves. Part IIT of the present
paper will show more in detail the reason for the obtained (not very
large, it ies true) discrepancies in the values of C.

In concluding this part, the theoretical cuxves of the friction
distribution transverse to and along the diffuser are given. 3By formula
(10):

S 2
Ve ~ S N . ’ 9 G ~
T = T \\ N
— = 1-& 28, | oPtak - -2 ) =t { 25,0~ 2= )
To & g 2b° 7 \ ob” -’

By substitution, according to expression (11),

there is obtainsd
=t [28.(J J.) + 1]
T o o}

According to the assumed approximation for the inertia integral,
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By substituting Jg, = ¢?m;o And introducing the diffuser parameter D
there is obtained finally

- N
TO - ”
On Figure 21 are constructed the curves L. £(&), according to
To :

formula (35), for the diffusers and cylindrical p%pe. It is interesting
how such small diffuser divergences as 1° ana 2 ; which seem insig-—
nificant at first sight, alfect the character of the friction distribu-
tion, As mey be seen, near & = 0.6 the local frictional shear for
the 1° diffuser is approximately twice and for the 2° diffuser about
four times the value for the straight pipe. '

On figures 22 and =3 are drawn the friction distridbutions along
the walls of the diffusers according to the law

: 2
for various values of Ty = (umr )m' The values of fo is expressed
as

tm \\2

1 2
fo ——?-Cfptm= p( Ep;/,

III. SOME CONSIDERATIONS WITH REGARD TO THE DEVIATIONS

FRCM THE RADIAL FLOW ASEUMPTION

It has already been pointed out that the nonconstancy of the valves’
of upr® along the liffuser axis indicates a systematic deviation from

the assumed radial flow, It is true that the deviation of the flow
from the radial direction is extremely small, It is interesting,
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hovwever, to estimate to a first approximation what these deviations are
and thelir effect on certain final results.

Investigation of the deviation from the radislity is poseible by
considering the so~called "secondary flows," that is, the transverse
componente v of the mean velocity directed along. the circular arcs
measuring the angles 8. The direct measurement of these velocities
is, of course, impossible.

An attempt was made to use the continuity equation connecting the
velocities v with the velocities u by analyzing with lte aid the
test curves of the velocity distribution. This abtempt did not, how~
ever, lead to any good resuits, for i1t was found that the sccuracy of
the test for this purpose was insufficient. Some conclusions may, how-
ever, be drawn frog.the obtained experimental law of the variation of
the magnitude unr~ along the axis.

It is assumed that at any point Ii with ccordinates 4§ and r
within the diffuser ihere are two component wvelocities w and v
(fig. 24%). By adding w. and v vectorially there is obtained the
modulus of the resultant velocity )

w = u+ v

By prolonging the direction of w +to its intersection with the diffuser
axis at point N, the peint N may be approximately considered as a
certain fictitious source producing a radial velocity field near point
M. Ths distance of this fictitious source is denoted from the vertex

of the cone by ON = Ar. By proceeding in the same way for each point
within the diffuser, various values will naturally be obtained for Ar.
In the general case,

Or = F(x, 3, u, v)

The extent by which Ar differs from zero will characterize the degree
of nonradiality of the true motion.

This function is expressed through the coordinates of the point
and the valuss of the velocities. From triangle OKM there is ob-
tained (fig, 2L)

-1
9, =9 + tan %
u
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On account of the smallness of v it may be essumed that tan * E “‘E .
Bearing in mind the smallness of the angles, write
(I‘ —Ar)-ﬂl = i
whence, combining with ths above eguation gives
v
r—-—
)
A = ——— (36)
v
u+ =
3

The limit which this function =2pproaeches will be found as J approaches
zero, that is, the value of this function on the axis of the diffuser:

/

1 v
r lim 3 /
¥ —0
Arp, = lim Ar = e
N,
§~=0 . ( v
Uy + lim T )
'a—ao \"8

From considerations of symmetry v = 0 on the diffuser axis. The limit

.
of the ratio 3 will be found by making use of the eguation of con~

tinuity, which for the two velocity components in spherical coordinates,
will have the form:

cu 1 ov 2u v
s -\—“ i e o
dr r &8 o rd

Combining the first and third terms of the eguation results in

dur’) dv v
- -=0
or r o9 tr 3

whence the reguired ratio
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_L,

I

/
"\

¢i

On passing tc the limit there is obtained:

¢

: /v> 1 g ) . (w)
B3 TR e TS 0

On the other hand, from L'Hospital's rule there is obtained:

lim <z = lim < > (37a)
4 -0 ‘B’ g —»0

Substituting this in expression (37) and solving the obtained expres—

v
sion for the limit of 3 gives:

2
/ v\\ 1 a(um_:z')
m ()= - = —em
d—=o0 NP or or
Thus,
Ay
3
Ly = - - (38)
1 B(umr)

T or
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uyr")
The value of the derivative —-é;—— is experimentally determined from

2
the curves of figures 8 and 9. The curve w,r =~ f(r) shown on thess

Tigures may, with a very large degree of accuracy, be represented as a
linsar function:

2

u,r = ar + b

In determining the values of & and b, use was made of the
mothod of least squares, which for the given case gives the generally
known formlas:

zumr"‘ 2" Er’ Euﬂ,r’

n n

n
Dt n 2r 2w,
n n n
q= H b= )
ST Sy
n n n n
S S

vhere the sums are taken for n readings of uy = f(r). (In the given
case n is the number of diffuser sections in which w, was measured. )
For these cases there was obtained (for maximum Reynolds numbers):

1° aiffuser a = 88.6 s-qua.re meters per second
b = 3769 cubic meters per second
2° aiffuser a = 59.6 square meters per second
b = 923.7 cubic meters per second

This leads to the computation formmla:

Brp=— —2— (39

a
20— —
m r

From expression (37a) it is found thet the first derivative of the curve
of transverse velocity distribution v with respect to 4 on the axis

will be:
ov ___a
(68 20 T
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where the minus sign indicates that the velocities v are in the direc—
tion opposite to those shown on figure 2k, that is, from the wall to the

axis.

In tables IV and Vare given the computed values of the function
Lrm = £(r) according to formmla (39).

TABLE IV.— COMFUTATION OF Ary

FOR 1° DIFFUSER

Coon : ™
oon vl s 6] 7|8 9 | w] 1| 12| 13
(;) 15.73/15.93|16.13;16.33|16.53|16.73{16.93{17.13][17.33|17.53|17.73
U . _

(m/sec)?l-0 |20.2 119.9 119.75/10.1 18.7 118.5 118.05{17.70117.34{16.9
Ory -2 bh| -2 5512 ,581 -2 ,60|-2.70|—2.76{-2.79 |~2.86|-2.92({-2.99 |~3.07
TABLE V.-- COMPUTATION OF Ar, FOR 2° DIFFUSER

Section | 3 L 5 6 7 8 9 20
(;> 8.88 | 9.08| 9.28 7 o.48| 9.68 | 9.8 | 10.08 | 10.28

U - |

(u/sec) 18.3¢ | 17.80 | 17.18 | 16.65 | 16.18 | 15.50 | 14.95 | 1k.50
Lry —2.00 | -2.06 | ~2.13 | -2.20 | =2.28 | ~2.40 | ~-2,49 | 2,57

|

The minus sign before the values of Ary,

source is located not ahead of the vertex of
way be seen, the values of
average 16 to 17 percent of the values of
23 to 25 percentc of the corresponding values

Lrp

for the

indicates that the fictitious

lO

of

r.

and for the
This, as may also

the cone but behind it.
diffuser constitute on the

As

29 diffuser
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be expected, 1s a consequence of the fact that the deviation from ra—
diality for the 2° diffuser is greater than for the 1° diffuser.

Moreover, it is seen that Ar, varies over the diffuser length.

The varlations of Ary, it is true, are not large in comparison with
r and copstitute over the entire range investigated 3.5 to 4 percent
for the 1° diffuser and 5.5 to 6.5 percent for the 2° aiffuser.
The latter circumstance makes it possible to assume approximately that
near the axis [low may actually be thought of as originating at the
fictitlious source behind the cone vertices at the mean distances

Lryp = —2.75 for the 1° aiffuser

and o
Lry = —-2,27 for the 2° diffuser

Since the true nonradial flow near the axis is approximately replaced
by a fictitious radial flow originating at the second source, the equa—
tion of conbtinuity valid for radial flow mey be applied to it; that

is, write
2
a[( = Y
— 1 U r - An )
arm m/|

whence
— \2
um< r - Arm> = ty = constant (h0)

The correctness of this expression is readily proved by drawing curves
similar to those of figures 8, 9, 10, and 11, the values ug(r — Arp)®
being laid off along the axis of ordinates. These curves are glven on
figures 25 and 25, On comparing with those of figures 10 and 11, it
would seem that the constancy of t; determined by formula (L40) is

considerably better satisfied than wlthout taking the displacement of
the source into account. In drawing these curves ray was considered
as independent of the velocity on the diffuser axis, that is, independ~
ent of the Reynolds number. This evidently corresponds with the facts,
since in determining Arp, formula (38), both the numerator and the
denominator may with a very large approximation be assumed proportional
to the velocity .

For still greater assurance as regards the possibility of rep-
resenting the nonradisl flow as a radisl flow originating from a
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fictitious source, Em was determined by still another method. 1ILet

it be assumed that there is give121 a test distribution along the dif—
fuser axis of the megnitude wuyr . It may be asked what increment Ar,

mist be given to r 1in order that the value of the product

- .2 .
up(r — Ary)  will deviate least from any constant values for each
Reynolds number. The statement of the problem.in this form leads to
finding e minimum of the function:

d):Z [%—Zum (r— A7)t — u,, (r — Z'rm)*Jz,

where the first part represents the sum of the squares of the deviations
of the velues up(r — Zr-m):2 from the mean teken for n readings. Re—

moving parentheses, differentiating with respect to Zr_m, and equating
ao

d Arg

to zero ylelds,after transforming the cublc equation in Em‘

[%—(Zﬂum)z — Zumﬂ] Ar,® + [Zum’r—%ZumZumr]Kﬁn’ —

n

O 3
R DI ISP IR N

n n

¥ 2,3 1 2
-+ urrt——- ) Unl Upr =0.
n n n

&7, +

The computations according to this equation, conducted with very great
accuracy, gave for the diffusers for maximum discherge rate the roots:
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1° Qiffuser Arp = —2.4% meters
(o] B
2 diffuser Ary = ~2,20 meters

The good'égreement of the. obtained values of Egﬁ with those comﬁuted

from the continuity equation very obviously indicates the acceptability
of all the fcregoing assumptions with yegard to Ar,

It is very interesting to inguire whether the results of the pres—
ent investigation conducted for the region near the diffuser may be
extended to the entire region of flow in the diffuser, assuming, of
course, in the general case Ar = £(3). That Ar necessarily must
depend cn 9 follows from its very definition. Thus, for example, on
the basis of expression (36) at the wall, that is, for 9 =9 it

0
it follows that:

Iim Ly o= - x
§ -3 . K
v O 60 lim -~ + 1
un—>o V
T >0
wvhere
Su
iy
. u . b
lim == lim é-;:-oo
v—>0 7V u—0 -
W -0 V—)Oaa

since on the basls of the eguation of continuity

while the value of

at the wall is, of course, not equal to zero.
Thus,

(Lr)yag, = O
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The function . &r = f£(9) “evidently should be of the following form:
It should increase sharply over the thiclkmess of the laminay sublayer
(where the effect of the viscosity, as has bgen seen, particuleriy dis-
turbs the radiality of the flow), and attain somewhere near the edge of
the laminar sublayer -a maximum followed by a smooth drop in the direc—
tion toward the diffuaer axis to the foregoing numerlcal values.,

The possibility of repreeenting the entire flow in the diffuser
as radial with displaced source has, in the writer's opinion, a certain
practical value. It is poseible thus, with a very high dsgree of ap—
proximation, taking for the continuity equation the expression.

s . é__ %" ( "*Ar>2‘l
S or Lum i =

to consider the phenomesnon as subJject to the equations of motion appli-
cable to the radial flow but substitute in them throughout r — Ar in
place of r. Thus there may be written instead of formula (6)

1 opy
= = — (r - &r
5 Seom ¢ X

(&)

and

f=7(r~ Ar)4

In place of expression (8) there is obtained:

1 0 1 )
P1 =P, =~y nG | - pue | (8)

Expressions (33) and (3L4) determining the experimental and theoretical
values of G become, respectively,

G=- (33')

D |F&
¥
o

fo?)
3
TN
L1
-
2l
\_,//
}
S
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7 .__\2']2
G=2l:um(‘r‘.é\rm/}_! !t'zloaeli] (34")

These formulas were written for the axis of the diffuser where Ar = Any,
8till retaining the previously made assumption that

=0

Ay
&
oY
&
L}

o

An attempt will be mads to verify whether the agreement of the
theoretical and experimental value3 of G is improved by the correc—
tion for the nonradiality according to formulas (33') and (34'). On
figures 27 and 28, analogous to figures 12 and 13, are drawn the curves

}..J

p=17T
|

==

As mway be seen, the introduciion of the correcsion Ary has almost no
effect on the appearance of the avove curves,

On Tigures 29 and 30,a comparison is made beiween the theoretical
and experimental valuss of G determined b; formulas (33') and (34').
As may be seen, comparing these curves with the previous figures 19 and
20, it may be found that although the correction Ar, gave excellent

results Tor the 1° diffuser, the test points for the 2° diffuser lie
on the other side of the theoretical curve and at a greater distance
than on figure 20,

It would seem that it is not difficult to establish the reason for
the result for the 2° Giffuser. Up to now it has been assumed that the
gradient of Ty along r 1is negligible in comparison with the cor—
resnonding gradient of p, and this permitted consideration of the
value of G as indepsndent of ¥, ZXvidently, although for the 1° dif-
fuser this neglect was Justifiable; for the 20 diffuser. where the
intensity of the turbulence fluctuations should be higher, it is neces—
sary to introduce a correction for T which is, of course, a func—
tion of both ¥ and r. The theory is ae yet unable to contridbute
anything in this direction.
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CONCLUSIONS

The theoretical and test results presented on the problem of the
turbulent motion in conical diffusers, are, of course, to a large ex—
tent approximate. The obtained satisfactory agresment between the
theoretical and the test results is a consequence of the smallness of
the divergence angles of the diffusers investigated. Undoubtedly, with
further increase in the divergence the effect of the secondary flows
will show up to an increasingly grester extent and finelly will lead to
separation of the flow. The invesitigation of a separated flow in the
diffuser is of great theoretical and practical interest. There does
net as yet aprear any way leading to the solution of this problem in
the full sense of the word: that is, a sclution which is self-contained
with respect to the boundary conditions. In the solution of such a
problem further develompment of this method of considering the flow as
emanating from a fictitious source may be of value.

Noted here are a few of the most important conclusions drawn from
the present investigation:

1. The asgsumption made at the beginning of the investigation of
the radiality of the flow holds true tc a satisfactory degree for both
diffusers investigated.

2. The assumption of the absolute character of the curve of mixing
length for the straight vipe end diffusers and the representation of
this curve by a cubical parabola give good agreement of the obtained
velocity profiles with experiment.

3. The resistance formule for the diffusers is identical with that
for the pipe.

Lk, The values of the absolute turbulence constants X and A in
the resistance formula determined on the basgis of tests on the straight
pipe are applicable also to diffusers, and this confirms the absolute
character of the constants.

5. The approximete representation of the acutally nonradial flow
in a diffuser by a radial flow originating from & fictitious source
gives the necessary correction in computing the veloclity drop along the
axes of the 1° and 2° diffusers and in computing the pressure drop
along the 1° diffuser, In computing the pressure drop for the 2°
diffuser, less favorable results were obtained because sufficient ac—
count was not taken of the magnitude connecting the normal component
of the turbulent stresses with the gradient along the diffuser. This

magnitude cannot as yet be theoretically obtained.
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In conclusion, the writer wishes to express his deep appreciation
to P. E. Kuryatnikov for assisting in the tests and computations in
connection with--the pregent pagper.

Translation by S. Reiss,
National Advisory Committee
for Aeronautics,
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